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Abstract

We attempt to maximize and minimize the volumes of separating ellipsoids to study the impact of
ellipsoidal volume on differential metamer generation. Despite having a similar accuracy as randomly
sampled points of unconstrained volume, ellipsoids with minimized volumes perform better visually.

1 Introduction

Differential Metamers [1] are 6-dimension tuples {c̄, î} in color space (where c̄ is [R, G, B],
and î is a 3-dimensional unit vector), such that for some α, the alternating of c̄ and c̄ + αî
is indistinguishable to the human eye, but distinguishable by a camera. Given a mapping
D(c̄) ⇒ αî, for all c̄ in the 8-bit RGB color space, we can encode any image with a binary
message via the following mapping M, where c̄ is the pixel at some x, y in the image, and
messagei is the bit at a region of the image in which the pixel is:

M(c̄) =

{
c̄, ifmessagei = 0

c̄+D(c̄), ifmessagei = 1

Figure 1: Four colors and their corresponding pair. The right two are ”visually good,” while the left two are
not.

Given a base image and an image with an embedded image based on the mapping M, we
are able to transmit messages in plain sight without specialized hardware or the transmission
being obvious. Visual MIMO [2] is a system which implements this encoding strategy, but
requires an abundance of differential metamers, such that the system can decode messages
quickly and without error.

1.1 Previous Work and Methods

Labelling a set of pairs is a two step process. First, we record a color c̄ in one frame, and a
checkerboard pattern of c̄+ î and c̄ in the next (ie: message = 10101010...), alternating at roughly
4 FPS, with a camera, which samples at twice the framerate of the display [3]. By sampling at
twice the display’s framerate, we eliminate the problem of a rolling shutter producing “dirty”
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Figure 2: Three subsequent frames, where the middle (dirty) frame contains bleeding from the surrounding
(clean) frames.

images (Figure 2), as we can manually remove all frames which occur on a shutter close. Next,
we can subtract the obtained “clean” frames, and extract the message [1, 4]. We label all pairs
which have a Bit Error Rate (BER) equal to zero as goodcamera, and all pairs with a higher
BER as badcamera.

BER =
bits incorrectly recovered

total bits in message

Next, we view each of the previously generated videos manually. If there appears to be a
flicker or other artifacts during the alternation of the frames, the pair is labelled as badvisual, or
goodvisual otherwise. The set of good points, then, is goodvisual ∩ goodcamera, and bad is all− good.

2 Differential Metamer Generation

Previous work [1, 5] has led to the development of a framework by which we can find new color
pairs which potentially are differential metamers via the generation of separating ellipsoids,
provided we have pre-labelled sets of color pairs, good and bad, which are indiscernible to
human vision tests but not to cameras, and those that fail either test, respectively.

The sets of colors are broken into k smaller clusters [5]. For each of the k clusters, we then
attempt to find an ellipsoid ε such that it includes all of the N good points and none of the M
bad points. This is a convex optimization problem [6] in which we attempt to find a P ∈ S6,
q̄ ∈ R6, and r ∈ R, such that P � 0, and satisfies the following conditions, where x are positive
(good) points, and y are negative (bad) points:

x̄Ti Px̄i + q̄T x̄i + r >= 1− u(i), for i = i, ..., N

ȳTi P ȳi + q̄T ȳi + r <= v(i)− 1, for i = i, ..., M
(1)

We attempt to minimize
∑N
i u(i) +

∑M
i v(i) in solving the problem. In doing so, we allow a

small margin of error in our ellipsoid calculation, which is better than failing if no ellipsoid can
totally separate the points. With a P , q̄, and r, we can sample points randomly and determine
if they are within any of the k ellipsoids.
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2.1 Ellipsoidal Volume

We empirically choose a k such that each ellipsoid, εk, spans some ideal number of points
within the training set. The generated ellipsoid seeks to simply enclose the good points,
without guaranteeing upper or lower boundaries on their volume. In effect, any two ellipsoids,
ε1 and ε2, could separate an entire cluster and yet have largely differing volumes. Typically,
these volumes are fairly consistent, but there is no attempt to minimize nor maximize them.

Since P is a symmetric, positive definite matrix, the volume of an ellipsoid ε is proportional

to the determinant of P [6], where γ is the volume of the unit ball of R6, ie: π3

6 :

Volume ∝ γ ∗ |P |
1
2

⇒ log(γ) +
1

2
log(|P |)

∝ log(|P |)

(2)

We take the logarithmic volume to obtain a concave function with respect to P ; that is, the
volume of the ellipsoid increases with respect to the |P |. We can maximize the volume by
maximizing the log(|P |). To minimize the volume, which is inversely proportional to |P−1|, we
can minimize -log(|P |):

1

Volume
∝ |P−1|

=
1

|P |
⇒ −log(|P |)

(3)

Ideally, we would set upper-bounds on the volume of an ellipsoid, and guarantee that any
ellipsoid ε had a volume strictly less than that upper bound. Unfortunately, constraints
of the format f ≤ g,where f is a concave function, are violations of the Disciplined Convex
Programming (DCP) ruleset (which is utilized by the system which solves the problem). There
is no way to formulate our problem such that it is concave with respect to P . Instead, we can
experiment with the effects of ellipsoidal volume by maximizing and minimizing the volume,
to observe extremas. Thus, when minimizing the volume, we use the system:

minimize(-log(|P |) + (

N∑
i

u(i) +

M∑
i

v(i)))

Subject to:

x̄Ti Px̄i + q̄T x̄i + r >= 1− u(i), for i = i, ..., N

ȳTi P ȳi + q̄T ȳi + r <= v(i)− 1, for i = i, ..., M

(4)

Maximizing the volume uses the system:

maximize(log(|P |)− (

N∑
i

u(i) +

M∑
i

v(i)))

Subject to:

x̄Ti Px̄i + q̄T x̄i + r >= 1− u(i), for i = i, ..., N

ȳTi P ȳi + q̄T ȳi + r <= v(i)− 1, for i = i, ..., M

(5)
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2.2 Current Challenges

Despite experimentation with clustering methods [5], the generation time of an ellipsoid is
dominated by the number of points closed within and their relative disorder. That is, as the
number of intermingled points increases, the running time to compute P , q̄, and r increases
non-linearly. This also has a spatial cost, such that for training data of approximately 15,000
points split among 20 ellipsoids, 8GB of RAM becomes insufficient.

Besides being slow to generate, points within the ellipsoid can be quite slow to label, to
the tune of roughly 30 minutes per 1,000 points. Ideally, every color pair generated by an
ellipsoid would be a differential metamer so as to alleviate the need to manually label points.
Practically, this isn’t possible, and so we either need to manually verify large amounts of data
or be able to use unlabelled points within a certain degree of accuracy.

2.3 Speed Improvements

We employ a slight optimization over the ellipsoid generation technique implementation [6]
in 2.1.1, so as to remove N + M − 2 inequality constraints, where good is an Nx6 matrix, and
bad is an Mx6 matrix: (∑

(goodT ∗ P ) · goodT
)

+goodT ∗ q + r >= 1− u(∑
(badT ∗ P ) · badT

)
+badT ∗ q + r <= v − 1

(6)

With the previous implementation, generating 5 ellipsoids from 8, 400 testing points took 115
minutes, growing nonlinearly as the number of points grew. Under similar conditions, gener-
ating 5 ellipsoids from the same starting data took under two minutes via this implementation.

3 Proposed Works

We seek to observe the effects of maximizing and minimizing the ellipsoid volume. Specifically,
we will design two experiment groups: ellipsoids generated with their volume being bound
toward an extrema (εexperimental), and ellipsoids generated without any modification to their
volume (εcontrol). We will take a subset of the points generated within εcontrol and label them
as described in 1.1. These labelled pairs will be called Dlabelled. These same points, with their
labels removed, will constitute Dunlabelled.

We will then examine the BER of message recovery for images embedded using each of our
data sets. We expect the BER (lower is better) of images embedded using the color pairs
in Dunlabelled to be quite high with quite noticeable screen flicker, while the BER of images
embedded using the color pairs in Dlabelled should be low, with very little image flicker. The
images embedded using points from the εexperimental are expected to have BER and screen
flickers falling between these two ranges. To test the versatility of color pairs, we embed
a checkboard message in a variety of images that have regions of varying texture and color
(Figure 3). Videos consist of one frame each of the base and embedded images [1, 4], displayed
at 4 FPS, while the camera samples at 8 FPS. All tests use an α of 10.

For consistency, all experiments were conducted using a Basler acA2040-90uc-CVM4000 cam-
era, which had its white-balance adjusted to the same image for every experiment (image #7
along the top-row in Figure 3) and was position approximately 1.5 meters from the screen.
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Figure 3: The fourteen images used to test BER rates.

3.1 Control Data Sets

Beginning with a set of 166 differential metamers (Dinitial), five ellipsoids were generated, to
be used to generate the training data for our experiments. From these five ellipsoids, 8,400
points (Dtraining) were evaluated, and labelled as good and bad. This set was used to generate
all future ellipsoids for both the control and experimental sets.

The ellipsoids come from three separate generations, each of which had a small subset of
its total points evaluated, and were generated from all previous training points. The three
generations had k = 5, k = 20, and k = 20 clusters, respectively, as the size of the training data
quickly grew. After sampling 18,600 points total (Dtraining included), we find 2,566 good pairs
(Dlabelled). The unlabelled dataset (Dunabelled) is simply the union of the good and bad pairs
that we classified, but with their labels removed.

3.2 Experimental Data Sets

We attempt to, at k = 20 and k = 80, produce ellipsoids with their volumes minimized and
maximized. The k-values were chosen such that we can see how a larger number of ellipsoids
spanning the same set of points affects the extrema of their volumes. As a baseline, for each
k-value, we also compute k ellipsoids without minimizing or maximizing the volume, such that
we can observe the standard deviation. There are four resulting sets of 18,600 color pairs each,
then, used to embed a message into images:

1. Maximum volume at k = 20

2. Minimum volume at k = 20

3. Maximum volume at k = 80

4. Minimum volume at k = 80
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4 Results

Figure 4: Side by side comparisons of image 4 (Figure 3) being embedded and decoded with the various
data sets.

set median mean stddev min max BER
Control, labelled

59.3255 60.7293 21.8072 29.3255 97.5178
8.75%

Control, unlabelled 10.27%
k = 20, max 69.4841 82.9839 29.088 35.6346 115.8132 12.59%
k = 20, min 17.8149 32.365 36.0382 0.0078 93.7374 10.96%
k = 20, base 61.5314 56.3064 11.0691 35.4286 74.7925
k = 80, max 112.6266 108.695 14.7406 34.476 116.3865 10.63%
k = 80, min 0.0234 5.9211 21.3565 0.0042 96.7166 10.54%
k = 80, base 62.5621 62.3871 6.5455 27.9629 78.4309

Table 1: Data information on the log(|P |) of the ellipsoids, and mean BER of each set over all fourteen
images tested

Each experiment was conducted several times. For BER analysis, we chose the continuous
set of images which had the least visual imperfections (screen tearing, light changes, etc).

4.1 Control Points

The control groups in our experiment showed fairly close BER rates on average. The un-
labelled data had a standard deviation (8.83%) approximately 2% higher than that of the
labelled data (6.99%). The unlabelled data was much more visually apparent than that of the
labelled data, as seen by Figure 4.

As expected, the labelled pairs presented much better visual results than their unlabelled
counterparts. There were some visual imperfections within the images generated using labelled
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data, mostly due to a smaller set of points to choose from. An easy fix for this is to include
more data points, which should occur in a later experiment.

4.2 Experimental Points

As expected, the ellipsoids with a minimized volume performed better than those with a
maximized volume. While the significance of this difference was lower than expected, a defini-
tive difference did appear - the maximized volume ellipsoids were less effective, visually and
recovery accuracy-wise, than their minimized counterparts.

At k = 20, we find that the control ellipsoids have a volume 3.3 times greater than the minimized
ellipsoids, and 1.7 times smaller than the maximized ellipsoids. At k = 80, the difference is
much more intense: 2535 times greater than the minimized ellipsoids, and 1.9 times smaller
than the maximized ellipsoids. Thus, we expect to see the most decisive results from k = 80.

5 Discussion and Future Work

We find that, among the fourteen images tested, the best BER results came from the labelled
pairs. This makes intuitive sense, as the labelled pairs were specifically chosen to minimize
the recovery BER. The ellipsoids with a minimized volume tended to perform better overall
than those which were maximized, which is interesting and worthy of future experiments.

While performing worse as a whole, on a case-by-case basis, the ellipsoids generated with
a minimized volume did sometimes perform better than the unlabelled control data. The
ellipsoids with a maximized volume tended to perform worse on a case-by-case basis. At
k = 80, we found much better results from the experimental data than at k = 20, which is
expected as the number of points per cluster drops. This is indicative of clustering errors at
lower k values.

Most interestingly, the visual impact of images embedded with the experimental data was
much less severe than the unlabelled control data. We thus can attempt to increase the α of
the experimental data until visually equivalent to the control data, which will decrease the
BER of message recovery. That is, we can obtain better results from the minimized ellipsoids
than we can with the unlabelled data at equivalent levels of visual interference.

Several images were clear outliers in the data, skewing our average BER slightly, but generally
persisted among all of the data sets. That is, some images, such as the first in Figure 3, yield
poor results due to features and colors within the image, rather than due to the underlying
set of color pairs used in embedding.

5.1 Clustering Algorithms

We see that the standard deviation of the volumes of the minimized ellipsoids is quite high.
This suggests that the clustering algorithms currently in use aren’t packing points together
tight enough – if the points are more confined, we can form a tighter closure around them. To
remove the possibility of this being an off-hand error, the minimization of several clusters that
had abnormally large volumes were recomputed several times, all to no avail – repeatedly, the
volumes were very large in comparison to the others obtained.
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The sets of maximized volumes also had a fairly high standard deviation – much more so than
the control sets, but not quite as high as the minimized sets. This is an inherent problem of
the number of bad points in relation to the number of good points in a cluster. As the number
of bad points increases, the chances of picking a cluster such that we can remove all of the
bad points drops significantly. Considering the poor results of the maximized points, though,
fixing this issue may be unimportant.

An experiment should be conducted in which we hold k to be constant, and utilize various
clustering methods to distribute points such that we can find more compact regions. Specifi-
cally, we should attempt to find points such that the volume can be minimized uniformly, else
remove ellipsoids with volumes higher than the average volume of the entire set.

5.2 Weighting the Objective Function

Among other issues present, we did not assign weights to the terms in the objective function.
Presently, the optimization problem we are solving assumes we will not be able to find a
perfect separating ellipsoid and thus allows for marginal errors (Section 2) that we attempt to
minimize. In the objective functions used in this experiment, we attempt to both minimize
the volume and these errors without weighting either above the other (similar can be said for
maximizing).

In future experiments, the volume should be weighted more heavily than the error margins.
Typically, the log volume is between 0 and 100, whereas u+ v is typically in the range of 1, 000
to 10, 000.
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